Matter & Energy

Remember...everything is made of matter & matter is made of atoms and molecules.

Those particles are in constant motion.

•

<u>Kinetic Theory of Matter</u>

Rules for determining speed of particles: 1.

2.

States of Matter

There are 3 basic phases of matter:

1. 2.

<u>2</u>. 3.

-the difference between them is determined in part by their particle movement:

- a. <u>Solids</u>-
- b. Liquids-
- c. <u>Gases</u>-

SO...how do we classify the different types of matter?

1. Solids-

-

-

-

2. Liquids-

-

_

-

-

3. Gases-

-

-

-

-

SO...what's the most common phase of matter?

What's plasma?

_

•

- Plasmas are influence by magnets

- Plasmas require an energy source to exist

Ex. Fluorescent lights/ Neon lights

** Plasmas are very similar to gases, but gases CANNOT conduct a current like a plasma can.

<u>Energy</u>

_

_

_

If there was no electricity...what sources of energy would you use?

- candles for light?
- Batteries?
- Food (our source of energy)?

What is energy?

Energy:

Now...since there are lots of different ways to move or change matter...there are several different types of energy.

For example...

Think back to the *Kinetic Theory of Matter*...

Temperature-What is it?

We think of temperature as being how hot or cold something is.

Temperature

•

- •
- •

Thermal Energy –

So far...the faster the particles move, the more kinetic energy they have.

- More K.E. =
- More K.E. =

Changes of State

Why does dew form? What causes ice to melt?

-these are changes of state.

•

Energy Transfers and Changes of State

First, it's important to realize that they identity of a substance doesn't change in a phase change, only the amount of energy the substance has does.

What kinds of changes are these? Physical or Chemical?

Ex.

- •
- **
- •

Specific Phase Changes:

Energy Requiring Changes:

1. Melting:

_

- > > >
 - > Melting point depends on pressure.

- 2. <u>Evaporation:</u>
 - Boiling
 - ➢ Boiling point-
- 3. <u>Sublimation:</u>

Ex.

_

- Ice in a freezer will eventually sublimate to water vapor.

Energy Releasing Changes:

- 4. <u>Condensation:</u>
 - -
 - Ex. Water droplets of a pop can.
 - Condensation point-
- 5. <u>Freezing:</u>
 - freezing point-
 - For a liquid to freeze,

Conservation of Mass and Energy

•

Mass is conserved in all changes. (both physical and chemical!)

Likewise, energy can change forms during a physical or chemical change, but the total amount of energy is constant from before to after.

** Fundamental Law of Physical Science!**

Law of Conservation of Mass:

Conservation of mass:

_

Ex. Burning a match.
(total mass before = total mass after)
match + oxygen
ash + smoke + gases

Law of Conservation of Energy:

Conservation of Energy:

-

<u>Fluids</u>

As we've stated, liquids and gases are both classified as *fluids*.

So...what's so special about fluids?

1. <u>Pressure</u>:

Ex.

- to calculate pressure:
 - 1 Pascal (Pa) = 1 N/m^2
- 2. <u>Buoyant Force</u>

If you place a rubber duck in a tub of water it floats.

When you push the duck down to the bottom and release, What happens?

-

_

3. <u>Archimedes Principle</u>

Archimedes was an ancient Greek Mathematician (300 bc)

Archimedes Principle

So...

4.

Ex. Bricks will sink in water because it is more dense.

So...how do steel ships float when steel is 8x more dense than water?

•

-

Fluids in Motion:

All fluids in motion will have similar properties.

1.

2.

- Viscosity =
- Viscosity =

In general...