Name	Class	Date	
Skills Worksheet			

Math Skills

Writing Ionic Formulas

After you study each sample problem and solution, work out the practice problems on a separate sheet of paper. Write your answers in the space provided.

The following table lists most of the ionic formulas you will need for the Practice section. The charge on other positive ions will be indicated by a Roman numeral.

TADI	$F \wedge F$	COMMON	
IΔHI	- ()-		1 11 1NI -

Name	Formula	Name	Formula	Name	Formula
Aluminum ion	Al^{3+}	Bromide ion	Br ⁻	Carbonate ion	CO_3^{2-}
Ammonium ion	$\mathrm{NH_4^+}$	Chloride ion	Cl ⁻	Cyanide ion	CN ⁻
Calcium ion	Ca ²⁺	Fluoride ion	F-	Hydrogen carbonate ion	HCO_3^-
Lithium ion	Li ⁺	Iodide ion	I ⁻	Hydroxide ion	OH ⁻
Potassium ion	K ⁺	Nitride ion	N ³⁻	Nitrate ion	NO_3^-
Sodium ion	Na ⁺	Oxide ion	O ²⁻	Phosphate ion	PO ₄ ³⁻
Strontium ion	Sr ²⁺	Sulfide ion	S ²⁻	Sulfate ion	SO_4^{2-}

PROBLEM

Tungsten has the highest melting point of any element. It appears in nature in the mineral, *wolframite*, as the compound tungsten(VI) oxide. Write the ionic formula for this compound.

SOLUTION

Step 1: List the symbols for each ion.

Symbol for tungsten(VI) ion: W^{6+} (VI indicates a charge of 6+) Symbol for oxide ion: O^{2-}

- Step 2: Write the symbols for the ions with the cation first. $W^{6+}O^{2-}$
- Step 3: Find the least common multiple of the ions' charges.

The least common multiple of 6 and 2 is 6. To make a neutral compound, you need a total of six positive charges and six negative charges.

To get six positive charges, you need only one W⁶⁺ ion, because $1 \times 6+=6+$. To get six negative charges, you need three O²⁻ ions, because $3 \times 2-=6-$.

Step 4: Write the chemical formula, indicating with subscripts how many of each ion are needed to make a neutral compound.

 WO_3

Name	Class	Date
Math Skills continued		
a. potassium chloridb. tin(II) bromide _	For the following ionic come	
	ula for the compound lithi	
(copper(I) oxide), no	number of different ores, antokite (copper(I) chloride Write the formulas for thes	e), and <i>chalcocite</i>
it is light and is stro	nger than either steel or alu the form of the mineral rut	g airplanes and rockets, because iminum. Titanium is most ile as titanium(IV) oxide. Write
•	by heating the ore <i>cinnaba</i> r mercury(II) sulfide.	ar, or mercury(II) sulfide. Write
forms are of many d iodine compounds for crystalline compound	ifferent colors. An examplormed with iridium: one, in	pow because the ionic salts it e of this is the two kinds of ridium(III) iodide, is a green (IV) iodide, consists of black ese iridium compounds.
which is added to st	eel and other alloys to stre	the element molybdenum, ngthen them. Molybdenite lfide. Write the ionic formula
to function normally		ne in order for the thyroid gland in table salt as a dietary source n iodide.

Name	Class	Date	
Math Skills continued			
` '	ctively, are both used i	known as ferric bromide and in organic chemistry as catal apounds.	
10. Calcium chloride is confor this compound.	mmonly used as a dryi	ng agent. Write the ionic for	 mula
` /	ecay. The presence of	ride, has been used in toothp fluoride ions helps tooth ena ula for tin(II) fluoride.	
12. Write the ionic formula	a for the compound str	ontium bromide.	

PROBLEM

Write the ionic formula for the compound lithium phosphate.

SOLUTION

- **Step 1:** List the symbols for each ion. Symbol for lithium ion: Li⁺ Symbol for phosphate ion: (PO₄)³⁻
- Step 2: Write the symbols for the ions side by side, with the cation first. $Li^+(PO_4)^{3-}$
- Step 3: Find the least common multiple of the ions' charges. The least common multiple of 1 and 3 is 3. To make a neutral compound, you need a total of three positive charges and one negative charge. To get three positive charges, you need three Li⁺ions, because $3 \times 1 + = 3 + .$ To get three negative charges, you need one $(PO_4)^{-3}$ ion, because $1 \times 3 = 3 .$
- Step 4: Write the chemical formula, using subscripts to indicate how many of each ion are needed to make a neutral compound.

 $\text{Li}_3(\text{PO}_4)$

Name	Class	Date
Math Skills continued	d	
PRACTICE		
13. Many ionic compo they are often iden to them before thei formulas for the fo names are in paren	tified by their mineral or con ir chemical composition was illowing calcium compounds theses:	ave been in use for so long that mmon names, which were given determined. Write the ionic s, whose common or mineral
	quicklime)	
	ate (calcite)	
14. One of the features not lose its luster. with air or water. I are a few gold com	s that has made gold attractive. This is because gold, unlike in fact, gold is not highly rea	we for centuries is that it does many metals, does not react active at all. Nevertheless, there common of these are gold(III)
catalyst, and is the from which manga	primary source of color in a mese is extracted are <i>pyrolus</i> , or manganese(II) carbonate	ion of types of steel, serves as a methyst. The two forms of ore site, or manganese(IV) oxide, e. Determine the ionic formulas
structure. One examaturally lavender Another example i	mple of these compounds is in color and turns a pinkish	red when water is added. urns from white to deep blue
chromium is so nat compounds have. I	m is derived from the Greek med because of the bright collisted below are several chrocolors. Write the ionic formula	omium compounds and, in
	_	
d. chromium(III) c	niorige (violet)	